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SUMMARY
The tandem duplicator phenotype (TDP) is a genome-wide instability configuration primarily observed in
breast, ovarian, and endometrial carcinomas. Here, we stratify TDP tumors by classifying their tandem
duplications (TDs) into three span intervals, with modal values of 11 kb, 231 kb, and 1.7 Mb, respectively.
TDPs with �11 kb TDs feature loss of TP53 and BRCA1. TDPs with �231 kb and �1.7 Mb TDs associate
with CCNE1 pathway activation and CDK12 disruptions, respectively. We demonstrate that p53
and BRCA1 conjoint abrogation drives TDP induction by generating short-span TDP mammary tumors in
genetically modified mice lacking them. Lastly, we show how TDs in TDP tumors disrupt heterogeneous
combinations of tumor suppressors and chromatin topologically associating domains while duplicating
oncogenes and super-enhancers.
INTRODUCTION

Whole-genome sequencing (WGS) of large numbers of human

cancers has revealed recurrent patterns of highly complex

genomic rearrangements, such as chromothripsis and chromo-

plexy (Baca et al., 2013; Stephens et al., 2011). Recently, three

groups have described an enrichment of head-to-tail somatic

segmental tandem duplications (TDs) primarily associated with

breast and ovarian cancers, which is commonly referred to as

the tandem duplicator phenotype (TDP) (Glodzik et al., 2017;

Menghi et al., 2016; Menghi and Liu, 2016; Nik-Zainal et al.,

2016; Popova et al., 2016). These early reports have shown a sta-
Significance

Whole-genome sequencing has revealed recurrent patterns o
Here we provide a detailed analysis of one such pattern, the
enrichment of genomically distributed head-to-tail somatic s
over 2,700 human cancer genomes, we develop a classificati
associated with specific genetic abnormalities and consequen
tion of BRCA1 and TP53 drives the emergence of a precise TDP
tumor suppressor gene disruption. Conversely, activation of th
cation of oncogenes and tissue-specific regulatory elements.
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tistical association between the TDP and loss ofBRCA1 in breast

cancers (Menghi and Liu, 2016; Nik-Zainal et al., 2016), loss of

TP53 and overexpression of certain cell cycle and DNA replica-

tion genes primarily in breast and ovarian cancers (Menghi et al.,

2016), and mutations of the CDK12 gene in a small subgroup of

ovarian cancers (Popova et al., 2016). These analyses also noted

that, within the TDP cancer genomes, TD span sizes are clus-

tered around specific lengths, which can be used to classify

distinct genomic subtypes of TDP. In fact, we have shown that

TDP tumors can be separated into at least twomajor subgroups:

TDP group 1 tumors are BRCA1-deficient and feature short-

span TDs (�10 kb), whereas TDP group 2 tumors are BRCA1
f DNA rearrangements occurring on a genome-wide scale.
tandem duplicator phenotype (TDP), characterized by an

egmental tandem duplications. Through a meta-analysis of
on algorithm that distinguishes six forms of TDP, each one
tial genomic rearrangements. We show that conjoint abroga-
state with short-span duplications and frequently results in
e CCNE1 pathway and CDK12mutations result in the dupli-
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Figure 1. Classification of TDP Genomes into Six Distinct Subgroups

(A) Representative TD span size distribution profiles for the six identified TDP subgroups. Individual distribution peaks are highlighted in blue. Vertical lines

indicate the three modal span sizes at 11 kb, 231 kb, and 1.7 Mb.

(B) Schematic overview of the TDP group classification approach.

(legend continued on next page)
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wild-type and feature medium-span TDs (�50–600 kb) (Menghi

et al., 2016; Menghi and Liu, 2016). Similarly, Nik-Zainal et al.

(2016) , examining over 500 breast cancer samples, described

two TD-based rearrangement signatures (RS), RS1 and RS3,

characterized by TDs of distinct sizes: >100 kb (RS1) and <10

kb (RS3) with RS3 but not RS1 strongly correlating with loss of

BRCA1. Popova et al. (2016) reported the ‘‘TD plus’’ phenotype

in some ovarian cancers featuring a large number of somatic TDs

with span distributionmodes at 300 kb and 3Mb associated with

disruptive CDK12 mutations.

Here, we propose to unify all of these separate observations

through a meta-analysis of cancer genomes representing a vari-

ety of tumor types, aiming to identify the genetic drivers that

converge on creating the TDP and to define the structural impact

of TDs on the cancer genome.

RESULTS

TD Span Distribution Profiles Classify TDP Tumors into
Six Distinct Subgroups
To explore the different configurations of the TDP in detail, we

first analyzed TD number and genomic distribution (i.e., TDP

score [Menghi et al., 2016]) across the entire Cancer Genome

Atlas (TCGA) WGS dataset, comprising 25 distinct tumor types.

Of the 992 TCGA cancer genomes analyzed, 118 (11.9%) were

classified as TDP (Table S1). We examined the TD span size dis-

tribution of each individual TDP tumor and observed only a few

recurrent patterns, each one characterized by either a modal

or a bimodal profile (Figure 1A). We systematically classified

these recurrent profiles by binning all of the modal peaks relative

to the TD span size distributions observed across 118 identified

TDP tumors in this dataset into five non-overlapping intervals,

based on the best fit of a Gaussian finite mixture model (see

the STAR Methods). We then labeled the TDs corresponding to

the five span size intervals as class 0: <1.6 kb in span size; class

1: between 1.64 and 51 kb (median value of 11 kb); class 2: be-

tween 51 and 622 kb (median value of 231 kb); class 3: between

622 kb and 6.2 Mb (median value of 1.7 Mb); and class 4: >6.2

Mb (Figure S1). Noticeably, classes 1–3 made up almost 95%

(146/154) of all the identified modal peaks (Table S2).

Using this classification, we were able to stratify TDP tumors

into six distinct subgroups. Tumors with a modal TD span size

distribution were designated as TDP group 1, group 2, or group

3, based on the presence of a single class 1 (11 kb), class 2 (231

kb), or class 3 (1.7 Mb) TD span size distribution peak, respec-

tively. Tumors that showed a bimodal TD span size profile

were designated as TDP group 1/2mix (featuring both a class 1

and a class 2 TD span size distribution peaks), group 1/3mix

(class 1 and class 3 peaks), or group 2/3mix (class 2 and class

3 peaks; Figures 1A and 1B). Only 1/118 tumors (0.8%) could

not be classified into any of the six identified TDP subgroups,

since it featured only very small or very large TDs (<1.6 kb, i.e.,

class 0; and >6.2 Mb, i.e., class 4), and was excluded from
(C) Left: convergence between the TDP group 2/3mix profile and tumors classifie

classification and RS3- and RS1-positive tumors as defined by Nik-Zainal et al. (2

(D) Bar chart of the relative proportion of each TDPgroup across the 31 tumor type

overall enriched or depleted for the TDP.

See also Figure S1, and Tables S1, S2, and S3.
further analysis. Thus, virtually all of the TDP tumors analyzed

exhibited clearly distinct TD span size distributions converging

on one of only three highly recurrent and narrowly ranged span

size intervals. These data strongly suggest that specific, distinct

mechanisms of DNA instability are at play in the identified TDP

subgroups.

When compared with the recently described TD-based

genomic signatures (Nik-Zainal et al., 2016; Popova et al.,

2016), our TDP classification algorithm classified 83% (5/6) of

the reported CDK12 TD plus phenotype-positive tumors as

TDP group 2/3mix (Figure 1C). It also classified 93% (74/80) of

RS3-positive tumors as TDP groups 1, 1/2mix, or 1/3mix; but

only 39% (18/46) of RS1-positive tumors as TDP group 2, 1/

2mix, or 2/3mix, with most of the remaining 61% (27/46) classi-

fying as non-TDP (Figure 1C). On closer inspection, most of the

tumors classified as RS1 that were not designated as TDP

featured only a small number of TDs (<15), and did not pass

the TDP score threshold. Since our threshold was defined by a

statistical segregation of a distinctive cancer genomic configura-

tion, these subthreshold RS1-positive tumors are likely not to

represent a specific mechanistic origin but a general character-

istic of cancer. Thus, collectively, there is a consensus that a

specific form of genomic instability characterized by accumula-

tion of TDs, which we call the TDP, exists in cancer. Our classi-

fication approach, however, simplifies and unifies the identifica-

tion of the TDP by generating a single score and provides refined

subclassifications based on TD span size.

TDP Subgroups Occur at Different Frequencies across
Different Tumor Types
We validated our classification scheme on a separate pan-

cancer dataset of whole-genome sequences relative to 1,725 tu-

mor samples from individual patient donors, assembled from 30

independent studies (see the STAR Methods and Table S3). A

total of 258/1725 (15%) tumors were classified as TDP, and

over 99% of these (257/258) matched one of the six identified

TDP subgroup profiles (Table S3), indicating that our classifica-

tion scheme performs consistently and robustly across different

tumor types and datasets.

When combined with the TCGA training set, we analyzed a to-

tal of 2,717 independent tumor genomes, of which 375 (13.8%)

classified as TDP (Table S1). Using this large dataset, we

confirmed that the TDP is not a ubiquitous characteristic of

cancer. In fact, whereas the TDP occurred in �50% of triple-

negative breast cancer (TNBC), ovarian carcinoma (OV), and

endometrial carcinoma (UCEC), it was found in 10%–30% of

adrenocortical, esophageal, stomach, and lung squamous carci-

nomas, and in only 2%–10% of a variety of other cancer types

including pancreatic, liver, non-triple-negative breast, and colo-

rectal carcinomas. Finally, the TDP was absent in leukemia, lym-

phoma, glioblastoma, prostate, and thyroid carcinomas, and all

forms of kidney cancer (Figure 1D; Table S1). Of note, the six

TDP subgroups recurred among the few highly TDP-enriched
d as CDK12 TD-plus by Popova et al. (2016). Right: overlap between the TDP

012). Numbers in parenthesis indicate the sample size for each tumor subclass.

s examined. *Binomial test statistics was applied to identify tumor types that are
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tumor types, but at significantly different relative frequencies

(Figure 1D). Whereas the TDP was found in almost half of all

TNBC, OV, and UCEC tumors (52.8%, 54.1%, and 48%, respec-

tively), TDP group 1 accounted for 29% (74/254) of all TNBCs

and 24% (38/159) of OV cancers, but only for 4% (2/50) of

UCEC tumors. Conversely, 30% of UCEC but only 7% of TNBCs

and 15% of OV cancers classified as TDP group 2 (Figure 1D;

Table S1). Intriguingly, the vast majority of TDP UCEC tumors

were of serous histology (66.7% versus 11.5% of non-TDP tu-

mors, p = 9.6 3 10�5; Fisher’s test) and were highly enriched

for the copy-number high-molecular subtype (91.6% versus

19.2% of non-TDP tumors, p = 1.83 10�7), while being depleted

for the microsatellite instability (MSI) profile (4.2% versus 34.6%

of non-TDP tumors, p = 0.01) (Cancer Genome Atlas Research

Network et al., 2013). Taken together, these observations sug-

gest that certain defined molecular differences must exist that

guide the formation of the distinct TDP subtypes, which are

distinct from those associated with the MSI form of genomic

instability.

Joint Abrogation of Both BRCA1 and p53 Specifically
Drives the Emergence of the TDP Group 1 Configuration
When we looked for specific mutations that may distinguish the

different TDP profiles, the most prominent observation was that

TDP subgroups characterized by a prevalence of short-span

TDs (class 1, �11 kb), either alone (i.e., TDP group 1) or in com-

bination with larger TDs (i.e., TDP groups 1/2mix and 1/3mix),

were tightly associated with BRCA1 deficiencies, including

somatic (8.4%) or germline gene mutation (48.7%), promoter hy-

per-methylation (42%), or structural rearrangement (0.9%) (Fig-

ure 2A). Indeed, in the pan-cancer dataset, <2% of non-TDP tu-

mors showed BRCA1 deficiencies, compared with 80.9% of

TDP group 1, 60% of TDP group 1/2mix, and 90.9% of TDP

group 1/3mix tumors. Importantly, this association was even

stronger when analyzing the TNBC and OV datasets individually,

where BRCA1 abrogation was present in at least 75% and up to

100% of tumors in TDP groups 1, 1/2mix, and 1/3mix (Figure 2A;

Table S4). By contrast, less than 10% of non-TDP and TDP

groups 2 or 3 tumors across the TNBC and OV datasets showed

BRCA1 deficiencies.

Whereas BRCA1 deficiency highly enriched for TDP profiles

comprising predominantly short-span TDs, either alone or in

combination with larger TDs,BRCA2 disruptions were not statis-

tically linked to any TDP configurations (Figure S2A). In fact, we

found BRCA2 mutations to be significantly depleted from TDP

group 1 in the pan-cancer dataset and from TDP groups 1 and

2 in theOV dataset (Figure S2A; Table S4), corroborating our pre-

vious finding of decreased BRCA1, but not BRCA2, expression

levels in TDP tumors (Menghi et al., 2016).

When considering the entire pan-cancer dataset, we observed

a second highly prevalent mutation associated with TDP: TP53

featured significantly higher rates of somatic mutations in all

TDP groups versus non-TDP tumors (86.3% mutation rate in

TDP versus 36.7% in non-TDP; Figure S2B) and across each

distinct TDP subgroup when compared with non-TDP tumors

(36.7% mutation rate in non-TDP versus 85.6% in TDP group 1,

84.1% in TDP group 2, 77.8% in TDP group 3, 90.2% in TDP

group 1/2mix, 94.7% in TDP group 1/3mix, and 88.9% in TDP

group 2/3mix; Figure 2B and Table S4). Of note, these significant
200 Cancer Cell 34, 197–210, August 13, 2018
associations persisted after adjusting for BRCA1 status in a

multivariate analysis (Table S4). Statistical association between

TP53 mutational status and TDP could not be found when

analyzing the TNBC and OV datasets separately only because

TP53 is mutated in virtually 100% of TNBC (194/226; Table S4)

and OV (138/140; Table S4). However, a strong association be-

tween functional loss of TP53 and TDP status was observed in

the UCEC dataset, where >85% of TDP group 2 tumors have a

somatic mutation of TP53 compared with <28% of non-TDP tu-

mors (Figure 2B; Table S4). Taken together, these data suggest

that TP53 mutations are necessary but not sufficient for the

development of all forms of TDP-related genomic instabilities.

Importantly, the conjoint abrogation of both p53 and BRCA1

was found in >72% of all TNBC and OV TDP samples with class

1 TDs (i.e., TDPgroups 1, 1/2mix, and 1/3mix), but only in <10.5%

of all other TDP groups and <4.7% in non-TDP tumors (Fig-

ure S2C; Table S4), suggesting that TDPs with class 1 TDs may

require both proteins to be abrogated for TDP formation.

Using genetically modified mouse models of mammary can-

cer, we sought to definitely determine the roles of p53, BRCA1,

and BRCA2 in generating the genomic pattern typical of TDP

group 1. We analyzed the genomes of 18 mouse breast cancers

caused by the targeted tissue-specific deletion of Trp53 alone

(KP, n = 3; WP, n = 3) or in combination with Brca1 (KB1P,

n = 3; WB1P, n = 3), Brca2 (KB2P, n = 3) or both Brca1 and

Brca2 (KB1B2P, n = 3) (Jonkers et al., 2001; Liu et al., 2007).

Using the identical scoring algorithm for TDP as used in human

tumor samples, we found the precise configuration of TDP

group 1 only in tumors with homozygous deletions of both

Trp53 and Brca1 (Figure 2C; Table S5). However, there was no

evidence of combined modal peaks represented by the group

1/2mix and 1/3mix configurations. Of the six tumors specifically

testing the combined homozygous deletion of Trp53 and

Brca1 showing a Trp53 D/D; Brca1D/D genotype, five were classi-

fied as TDP group 1. Similar to the human TDP group 1 tumors,

the murine mammary cancers exhibited short TD spans of

2.5–11 kb (median value = 6.3 kb; Figure 2D). The remaining

Trp53 D/D; Brca1D/D tumor that was not scored as TDP had the

appropriate TD class 1 modal peak but did not achieve the strict

numerical threshold to be called a TDP tumor (TDP score =

�0.23, with cut off being 0) (Figures 2C). None of the tumors

arising from sole disruption of Trp53, or of Trp53 and Brca2,

showed any TDP characteristics (Figure 2C; Table S5). In tumors

arising frommicewith the intention of knocking out Trp53,Brca1,

and Brca2 simultaneously, we observed that whereas Trp53 and

Brca2 were affected by homozygous deletions across all three

tumors, Brca1 was found to exhibit homozygous deletion in

only one tumor. Importantly, this was the only tumor among

the three that classified as TDP group 1. The remaining two tu-

mors were non-TDP andmaintained either one or both functional

copies of Brca1 (Figure 2C; Table S5). These data provide the

experimental proof that the TDP group 1 configuration is a uni-

versal and specific feature of BRCA1-linked breast tumorigen-

esis, emerging in the context of a TP53 null genotype. This

also implies that BRCA1 haplo-insufficiency is not sufficient to

induce the TDP in the presence of TP53 loss, despite recent

evidence that it may indeed contribute to the transformation of

normal mammary epithelial cells (Pathania et al., 2011). Also,

not only does BRCA2 deficiency not induce any form of TDP,
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Figure 2. Conjoint Abrogation of BRCA1

and TP53 Results in TDP with Class 1 TDs

(A) Percentage of tumor samples with abrogation

of the BRCA1 gene. Only tumor type/TDP group

combinations comprising at least eight samples

were analyzed. NA, data not available; non, non-

TDP; g1, g1/2mix, g1/3mix, g2, g3, g2/3mix: TDP

groups 1, 1/2mix, 1/3mix, 2, 3, and 2/3mix;

OTHER: all tumor types except TNBC, OV, and

UCEC.

(B) Percentage of tumor samples with TP53

somatic mutations. Annotations as in (A). Number

of samples for each tumor type/TDP group com-

bination do not necessarily match those reported

in (A) because of missing values.

(C) TDP classification for mouse breast cancers

with somatic loss of Trp53 and/or Brca1/2. T,

Trp53; B1, Brca1; B2, Brca2.

(D) Span sizes of TDs found in Trp53/Brca1 null

tumors (left) and in Brca1-proficient tumors (right).

***p < 0.001, **p < 0.01, *p < 0.05, by (1) general-

ized linear mixed model with tumor type as the

random effect or (2) Fisher’s exact test. See also

Figure S2 and Tables S4 and S5.
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Figure 3. Genetic Perturbations Associated with BRCA1-Proficient TDP Groups

(A) Percentage of tumor samples with damaging mutations affecting CDK12.

(B) Percentage of tumor samples showing CCNE1 pathway activation (FBXW7 somatic mutation or CCNE1 amplification).

Annotations as in Figure 2A. ***p < 0.001, *p < 0.05, by (1) generalized linear mixed model with tumor type as the random effect or (2) Fisher’s exact test. See also

Tables S4 and S6, and Figure S3.
our observations suggest that abrogation of BRCA2 does not

suppress TD formation in the presence of BRCA1 deficiency.

Finally, the absence of any bimodal peak configurations (i.e.,

TDP groups 1/2mix or 1/3mix) in the mouse tumors suggests

that additional mutations may be necessary to drive the mixed

forms of TDP.

Identification of the Genetic Perturbations Driving Non-
BRCA1-Linked TDP Groups
To identify potential genetic drivers for the non-BRCA1-linked

TDPs, we compared rates of gene perturbation by somatic single

nucleotide variation across different TDP subgroups. In the initial

discovery phase, we analyzed tumor samples in the breast, OV,

and UCEC cancer datasets, which comprised the highest num-

ber of TDP tumors, and compared individual genemutation rates

across tumor subgroups, searching for genes whose mutation

rate was significantly higher in non-BRCA1-linked TDP groups
202 Cancer Cell 34, 197–210, August 13, 2018
compared with TDP group 1 and with non-TDP tumors (see the

STAR Methods). CDK12 emerged as the strongest candidate

linked to the TDP group 2/3mix profile, showing disruptive muta-

tions in 26.7% of TDP group 2/3mix tumors, compared with 0%

of TDP group 1 (p = 2.3 3 10�4, Fisher’s test) and <1% of non-

TDP tumors (p = 4.0 3 10�5, Fisher’s test; Figure S3A). Also,

as reported previously (Popova et al., 2016), when looking at

CDK12 mutation rates within individual tumor types, the highest

frequency of mutation occurred in the OV subset, where disrup-

tion of CDK12 by somatic mutation explained 60% (6/10) of

all TDP group 2/3mix tumors, but was absent in TDP group 1

(0/27) and in non-TDP (0/45) tumors (Figure 3A; Table S4). Taken

together, these results confirm the existence of a CDK12-linked

genomic instability profile characterized by TDs of specifically

large span size.

When focusing on TDP group 2 tumors, the strongest associ-

ation involved FBXW7, which was mutated in 11.5% of TDP



group 2 tumors, compared with 2.1% of TDP group 1 (p = 2.3 3

10�2, Fisher’s test) and 1.3%of non-TDP tumors (p = 4.43 10�4;

Figure S3B). Although significant, the disruption of FBXW7 could

only explain a modest fraction of all TDP group 2 tumors. We

therefore hypothesized that other genes may contribute to this

profile by virtue of copy-number variation (CNV). To explore

this possibility, we focused on the TCGA dataset and examined

CNV profiles that might be associated with TDP group 2 using a

linear mixed model analysis (see the STARMethods). The top six

genes ranked in this analysis were all part of the 19q12 amplicon

that is frequently found in ovarian, breast, and endometrial carci-

nomas, and that comprises CCNE1 (Etemadmoghadam et al.,

2013) (Figure S3C; Table S6). The FBXW7 protein is known to

act as a negative regulator of CCNE1 activity by binding directly

to the CCNE1 protein and targeting it for ubiquitin-mediated

degradation (Klotz et al., 2009). Thus, FBXW7 disruptive muta-

tions might phenocopyCCNE1 amplification, therefore indepen-

dently contributing to the same oncogenic pathway. When as-

sessing the frequency of CCNE1 pathway activation defined by

the presence of either FBXW7 somatic damaging mutations or

CCNE1 amplification (R6 gene copies), 32.4% of TDP group 2

tumors scored positively, compared with <5% of non-TDP tu-

mors and TDP group 1 tumors (Figure 3B; Table S4). Specifically,

in each one of the individual TNBC, OV, and UCEC datasets,

CCNE1 pathway activation was found to explain at least 40%

of TDP group 2 tumors (Figure 3B).CCNE1was neither a hotspot

for TD formation in TDP tumors (see below) nor was it perturbed

by the class 2 TDs characteristic of TDP group 2. In fact, only in

3% of CCNE1 amplifications featured a class 2 TD. Importantly

the significant association between CCNE1 pathway activation

and TDP status was maintained when those tumor samples

where a class 2 TD duplicated the CCNE1 gene were removed

from the analysis (Table S4), supporting the hypothesis that

CCNE1 activation is a cause rather than a consequence of the

TDP group 2 configuration.

TD Breakpoint Hotspots
We hypothesized that certain genomic loci may be targeted for

TD formation and that these loci would differ across different

TDPs. To address this possibility, we counted the number of

TD breakpoints falling into consecutive 500-kb genomic win-

dows for each one of the four major sets of TDs observed across

the pan-cancer dataset (i.e., class 1 TDs [�11 kb], class 2 TDs

[�231 kb], class 3 TDs (�1.7Mb), and non-TDPTDs; Figure S4A),

We then identified genomic hotspots as 500-kb windows with an

observed number of breakpoints significantly larger than ex-

pected (see the STARMethods). A total of 245 genomic windows

were identified as genomic hotspots for TD breakpoints (Table

S7). Importantly, the overall genomic distribution of the signifi-

cant hotspots was very different when comparing the four TD

classes. Most of the 101 genomic hotspots relative to the non-

TDP TD breakpoints tightly clustered across a small number of

distinct genomic regions that have been reported to be

frequently involved in oncogene amplification (i.e., ERBB2,

MYC, CCND1, CDK4, and MDM2; Figures 4A, S4B, and S4C).

This confirms our previous report that TDs are commonly

implicated in nucleating amplicon formation in regions of gene

amplification in cancer (Inaki et al., 2014). By contrast, the TDP

genomic hotspots were more uniformly scattered along the
genome (Figures 4B and S4C) and they appeared to engage

different sets of oncogenic elements, with tumor suppressor

genes (TSGs) and oncogenes being commonly found within

the genomic hotspots identified for class 1 and class 2 TDs,

respectively (Figure 4B and see below).

Of note, despite the fact that the number of class 1 TDs was

more than double that of class 2 TDs (22,447 class 1 TDs versus

9,794 class 2 TDs), there was a larger number of class 2 TD

breakpoint hotspots compared with class 1 (102 versus 30), sug-

gesting greater selectivity for the formation of the short-span

class 1 TDs (Figure S4B; Table S7).

Functional Consequences of TDPs: Gene Duplications
and Gene Disruptions
We have previously shown that TDs occurring in the context of

TDP are more likely to affect gene bodies of oncogenes and

TSGs than what is expected by chance alone, suggesting a

strong selection for consequential genomic ‘‘scars’’ that favor

oncogenesis (Menghi et al., 2016). Herein, we extended our

analysis to account for the effect of TDs of different span sizes

(class 1 versus class 2 versus class 3), occurring across the

distinct TDP groups. A TD can affect gene body integrity in

one of three ways: (1) the TD spans the entire length of a

gene body resulting in gene duplication; (2) both TD break-

points fall within the gene body resulting in a disruptive double

transection; and (3) only one TD breakpoint falls within a target

gene body, resulting in a de facto gene copy-number neutral

rearrangement. We posited that these effects would be sys-

tematically mediated by TDs of different span sizes, with larger

TDs (>231 kb, i.e., class 2 and class 3) being mostly involved in

gene duplications and shorter TDs (�11 kb, i.e., class 1) more

frequently causing gene disruptions via double transections. In

fact, we observed that 45% of class 1 TDs (Figure 5A) disrupt

genes by double transection, but uncommonly result in single

transections (18.2%) and even more rarely in gene duplications

(5.7%), whereas the larger class 2 and class 3 TDs are more

commonly implicated in single transections (66.9% and

74.7%, respectively) and in gene duplication (63.3% and

97.2%; Figure 5A). Importantly, these observations suggest

that, by virtue of the nature of the prevalent TDs in each TDP

group, distinct TDP subgroups are subjected to different forms

of gene perturbation. Indeed, we found that TDP tumors

featuring a prominent class 1 TD modal peak (i.e., TDP groups

1, 1/2mix, and 1/3mix) share a larger number of gene disrup-

tions due to double transections as opposed to the other

TDP tumors (Figure 5B). Conversely, TDP tumors with larger

TD peaks (e.g., groups 2, 3, and 2/3mix) feature a significantly

higher number of gene duplication events (Figure 5C).

Given our observation that TSGs and oncogenes preferentially

map to breakpoint hotspot regions associated with short (class

1) and larger (class 2) TDs, respectively, we predicted that these

two classes of cancer genes would be directly altered by TDs in

ways that augment oncogenicity. To test this hypothesis, we

analyzed which types of genes are affected by TDs more

frequently than expected by chance alone (see the STAR

Methods). We found that double transections, most commonly

induced by class 1 TDs, predominantly and significantly disrupt

TSGs, whereas gene duplications, which result from class 2 and

class 3 TDs, predominantly engage oncogenes but not TSGs
Cancer Cell 34, 197–210, August 13, 2018 203
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Figure 4. Genomic Hotspots of TD Breakpoints

(A) Genomic distribution of hotspots for TD breakpoints found in non-TDP tumors.

(B) Genomic distribution of hotspots for TD breakpoints found in TDP tumors. Top three panels: genomic hotspots for class 1, class 2, and class 3 TDs. Lower

panel: recurrent genomic hotspots across different TD classes. Known oncogenes and TSGs are flagged in red and blue, respectively.

See also Table S7 and Figure S4.
(Figures 5D and 5E). Genes undergoing single transections

should theoretically result in functionally neutral events: one

allele transected but compensated by the duplication in situ.

However, there was primarily an enrichment of TSGs at the sites

of the single transections (Figure 5D). Though the precise mech-

anism is unclear, it is possible that the intact duplicated allele has

been perturbed by either methylation, or by perturbation of spe-

cific regulatory elements, rendering the cell haplo-insufficient for

the involved gene.

Among the most commonly disrupted TSGs were PTEN

(affected in 16% and 6% of TNBC and OV TDPs with class 1

TDs), RB1 (15% and 10% of TNBC and OV TDPs class 1 TDs),

and NF1 (20% of OV TDPs with class 1 TDs) (Figures 5E–5G

and S5; Table S8). In the majority of the cases we examined,

these highly recurrent and potentially oncogenic TD-mediated

events appeared to occur independently from each other (Fig-

ures S5A and S5B). Of note, given the strong causality between
204 Cancer Cell 34, 197–210, August 13, 2018
loss of BRCA1 and the presence of class 1 TDs, a BRCA1-null

status is also significantly associated with disruption of the

PTEN, RB1, and NF1 genes via TD-mediated double transection

in tumor samples that harbor wild-type exonic sequences for

these genes (Figures S5A and S5B). This has implications for

the clinical setting since this TD-mediated TSG disruption would

not be detected using standard exome sequencing protocols

(discussed below).

Genes that were recurrently duplicated by TDs included

ERBB2 (duplicated in 16% of UCEC, 9% of TNBC, and 7%

of OV TDPs with class 2 TDs), MYC (21% of TNBC TDPs

with class 2 TDs), and ESR1 and MDM2 (36% and 29%, of

OV TDPs class 3 TDs, respectively) (Figures 5E and S5; Table

S8). The oncogenic long non-coding RNA MALAT1 was also

often subjected to duplication in TNBC TDP tumors with class

2 TDs (12%), suggesting its activation by gene duplication (Fig-

ure S5A; Table S8).
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Figure 6. TD-Mediated Duplication of

Tissue-Specific Regulatory Elements and

TAD Boundaries in TDP Tumors

(A) Percentage of class 1, 2, and 3 TDs involved in

the duplication of disease-associated SNPs and

tissue-specific super-enhancers (observed versus

expected) in the TNBC and OV datasets.

(B) Percentage of class 1, 2, and 3 TDs partici-

pating in TAD boundary duplication (observed

versus expected) in the TNBC and OV datasets.

p values by chi-square test.

See also Table S6.
Functional Consequences of TDPs: Duplication of
Regulatory Elements and of Chromatin Structures
A recent study of breast cancer genomic rearrangements has

found large span TDs (>100 kb) to frequently engage germline

susceptibility loci and tissue-specific super-enhancers (Glodzik

et al., 2017). Similarly, we found that cancer-associated SNPs

identified byGWAS studies and tissue-specific super-enhancers

are indeed commonly duplicated by large span TDs in TDP tu-

mors. In TNBCs, both class 2 and class 3 TDs engage in the

duplication of breast-specific regulatory elements more

frequently than expected, based on 1,000 permutations of TD

coordinates (Figure 6A; Table S9). Conversely, class 1 TDs are

significantly less frequently involved in the duplication of these

regulatory elements, even when considering their differential

sequence spans (Figure 6A; Table S9).

Topologically associating domains (TADs) are conserved 3D

chromatin-folding arrangements in the genome that facilitate

coordinated transcriptional regulation. Perturbations of TAD

structures are associated with transcriptional remodeling and al-

terations in transcriptional control (Dixon et al., 2012). This is

especially true when TAD boundaries are disrupted and alterna-

tive/illegitimate enhancers are allowed to engage target gene

promoters. We assessed whether TAD boundaries are disrupted
Figure 5. TD-Mediated Effects on Gene Bodies

(A) Number of gene double and single transections and gene duplications caused by TDs of different span

(B) Number of TD-mediated gene double transections in TDP tumors with class 1 TDs (TDP groups 1, 1/2mix

Boxes span the interquartile range, with the median values marked by a horizontal line inside the box. Whisk

each box. p values by Mann-Whitney U test.

(C) Number of TD-mediated gene duplications in TDP tumors with a prevalence of class 2 and class 3 TDs (TD

TDP tumors. Boxes span the interquartile range, with the median values marked by a horizontal line inside the

range from each box. p values by Mann-Whitney U test.

(D) TSG and oncogene enrichment across sets of genes recurrently impacted by TDs via single or double t

*p < 0.05, by Fisher’s exact test.

(E) Recurrently TD-impacted genes by TD class and type of TD-mediated effect. Top: number of genes rec

prevalence of TD-mediated gene disruptions: x_axis, genomic location; y_axis, cumulative fraction of affe

examined. Selected genes are flagged for easy of reference.

(F) High density of class 1 TDs at the PTEN locus in both the TNBC and OV datasets.

(G) Percentage of TDP tumors affected by significantly recurrent class 1 TD-mediated double transection e

See also Table S8 and Figure S5.
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by TDs in TDP tumors. Specifically, we

asked whether TAD boundaries are

more likely to be duplicated by a TD in

TNBC and, independently, in ovarian

cancer. Using the CTCF-derived TAD

genome map from the lymphoblastoid
cell line GM12878 as reference (Tang et al., 2015), we mapped

TD coordinates to the 3D genome. We found that TAD bound-

aries are statistically more frequently duplicated than expected

by chance alone by class 2 TDs in both the TNBC and OV data-

sets (Figure 6B; Table S9). By contrast only a very modest in-

crease in TAD boundary duplications was seen for class 3 TDs

in breast cancer, and no association at all was observed for class

1 TDs (Figure 6B).

Taken together, these analyses show that TDs in the context of

TDP target many known oncogenic elements rather than

concentrating on a few recurrent genes. On average, class 1

TDs found in TDP group 1 tumors result in the disruption of 3.7

known TSGs per genome but do not engage in the duplication

of other oncogenic elements (Figures 7A and 7B). TDP group

1/2mix and TDP group 1/3mix have on average 2.6 disrupted

TSGs, and 5.6 and 11.8 duplicated oncogenes, respectively (Fig-

ures 7A and 7B). By contrast, TDP groups 2, 3, and 2/3mix

tumors that only feature larger span TDs rarely feature double

transection of TSGs (on average 0.4, 0, and 1 TSG is affected

in TDP groups 2, 3, and 2/3mix, respectively), but they feature

a higher number of duplications, with an average of 6.8, 37.4,

and 63 duplicated oncogenes per cancer genome, respectively

(Figures 7A and 7B).
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, and 1/3mix) compared with the other TDP tumors.
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Figure 7. Number of TD-Mediated TSG Disrup-

tions and Oncogene Duplications across

Different TDP Groups

(A) Number of known cancer genes per genome that

are duplicated or disrupted as a result of specific TDP

configurations.

(B) Boxplot summary of the data presented in (A).

Boxes span the interquartile range, with the median

values marked by a horizontal line inside the box.

Whiskers extend to 1.5 times the interquartile range

from each box, and outliers are drawn as individual

points extending past the whiskers.
DISCUSSION

Herein, we provide a detailed analysis of one cancer chromotype,

the TDP, by devising a simple quantitative scoring system to bet-

ter defining TDP taxonomy. We showed that TDPs can be classi-

fiedby the predominant span size of their TDs: 11 kb (i.e., class 1),

231 kb (i.e., class 2), and 1.7 Mb (i.e., class 3). This subclassifi-

cation was the key to identify the primary drivers of genome-

wide TD formation. Of all TDP tumors, those characterized by

class 1 TDs, alone (i.e., TDP group 1) or in combination with other

TD span sizes (i.e., TDP groups 1/2mix and 1/3mix) were signifi-

cantly enriched for the conjoint loss of BRCA1 and p53. We

proved the genesis of the TDP group 1 configuration in murine

models of mammary cancers driven by the homozygous deletion

of Trp53 and Brca1, suggesting that perturbation of BRCA1 has

universal genome-wide effects distinct from BRCA2.

In support of this model, we have recently defined the mech-

anism of TD formation in murine embryonic stem cell (ESC)

cultures, where TDs form at sites of replication fork stalling in

Brca1-depleted cells by a mechanism that entails re-replication

of kilobases-long tracts of chromosomal DNA adjacent to the

site of fork stalling (Willis et al., 2017). This effect was also spe-

cific to BRCA1 loss and was not a feature of BRCA2 loss. The

striking similarities between the genetic control of TD formation

in this model and the induction of TDP group 1 tumors strongly

suggest that class 1 TDs in cancer arise by similar aberrant re-

replication at stalled forks exclusively in the presence of defec-

tive activity of the BRCA1 protein. Though Trp53 was not genet-

ically disrupted in the ESC culture model, it is known that the p53

protein in mouse ESCs does not translocate to the nucleus in

response to DNA damage to activate a p53-dependent response

(Aladjem et al., 1998). Thus, mouse ESCs are functionally defi-

cient in p53, closely resembling the TP53 null condition identified

in TDP tumors. Precisely how loss of BRCA1 ‘‘licenses’’ class 1

TD formation and why BRCA2 does not is currently unknown. In

this regard, although BRCA1 and BRCA2 have common roles in

regulating RAD51-mediated homologous recombination (HR)

and at stalled forks, BRCA1 has additional functions in double-

strand break (DSB) repair and in stalled fork metabolism that

are not shared with BRCA2 (Aladjem et al., 1998; Pathania

et al., 2011; Prakash et al., 2015; Schlacher et al., 2012).
C

The genetic origins of the BRCA1-

proficent TDP subgroups (groups 2, 3, and

2/3mix), characterized by larger class 2

(�231 kb), and/or class 3 (�1.7 Mb) TDs,
are more heterogeneous. By association, we found that activa-

tion of the CCNE1 pathway either through CCNE1 amplification

or by FBXW7 mutation accounted for 40% of TDP group 2 tu-

mors across each one of the TNBC, OV, and UCEC datasets,

but only manifested in 10% of non-TDP and <3% TDP group 1

tumors. CCNE1 is known to engage cyclin-dependent kinases

to regulate cell-cycle progression. Its deregulation causes repli-

cative stress by slowing replication fork progression, reducing

intracellular nucleotide pools (Bester et al., 2011), and inducing

cells to enter into mitosis with short incompletely replicated

genomic segments (Teixeira et al., 2015). As a model of onco-

gene-induced replicative stress, CCNE1 overexpression in

U2OS cells induced copy-number alterations, which were pre-

dominantly segmental duplications (Costantino et al., 2014).

Somatic mutations affecting CDK12 were most prevalent in

TDP group 2/3mix tumors, which comprise both class 2 and

class 3 TDs, indicating a mechanism of TD formation distinct

from the augmented CCNE1 function hypothesized for TDP

group 2 tumors. CDK12 is an RNA polymerase II C-terminal

domain kinase that transcriptionally regulates several HR genes.

Defects in CDK12 are associated with the downregulation of crit-

ical regulators of genomic stability such as BRCA1, ATR, FANCI,

and FANCD2 (Blazek et al., 2011; Joshi et al., 2014). That loss of

CDK12 affects BRCA1 expression but generates a TDP profile

that is clearly distinct from the BRCA1-dependent TDP group 1

configuration suggests that the primary action of CDK12 is likely

to be different from its effects on BRCA1.

The TDP is a model for combinatorial genetics in cancer. By

classifying the effect of TDs on gene bodies, we showed that

the TDP generates a genome-scale pro-oncogenic configuration

resulting from the modulation of tens of potential oncogenic sig-

nals. These effects were mediated systematically by TDs of

different span sizes, with larger TDs (class 2 and class 3, >231

kb) being mostly involved in the duplication of oncogenes

and regulatory elements and TAD disruption, and shorter TDs

(class 1, �11 kb) more frequently causing TSG disruptions.

The top three genes disrupted by class 1 TDs were PTEN and

RB1 in both TNBC and OV cancer types and NF1 in the OV data-

set. These genes are predominantly implicated in cell survival

and cell-cycle regulation through the PI3K, E2F, and RAS path-

ways. However, recent evidence showed a role for their products
ancer Cell 34, 197–210, August 13, 2018 207



in modulating genetic instability. RB1 has been reported to be

essential for DNA DSB repair by canonical non-homologous

end joining, a defect invoked to explain the high incidence of

genomic instability in RB1-mutant cancers (Cook et al., 2015).

PTEN has been considered a major factor in genome stability

through its effects on maintaining centromere stability, by con-

trolling RAD51 expression (Shen et al., 2007), and by recruitment

of RAD51 through physical association of PTEN with DNA repli-

cation forks. These studies suggest a function for PTEN with

RAD51 in promoting the restart at stalled replication forks

(He et al., 2015). The role of NF1 in HR-deficient tumors, although

statistically observed, is less established. However, the C3H-

Mcm4Chaos3/Chaos3 mouse model, which harbors a disrup-

tion of Mcm4 (encoding a member of the family of MCM2-7

replicative helicases), invariably results in mammary cancers

with Nf1 deletions and chromosomal instability (Wallace et al.,

2012). Thus, TDP groups 1, 1/2mix, and 1/3mix tumors, which

originate with defects in BRCA1-mediated HR mechanisms,

appear to compound the defect by accumulating downstream

mutations that disable genes involved in chromosomal stability

and DNA repair, in addition to cellular functions such as cell-cy-

cle and cellular metabolism. By contrast, TDP groups 2, 2/3mix,

and 3 tumors recurrently duplicate oncogenes such as MYC

and ERBB2, oncogenic lncRNAs such as MALAT1, and disrupt

TADs. This would suggest that, although the genomic character-

istic is TD formation, the functional consequences of TD-induced

abnormalities vary significantly between the TDP forms.

Taken together, our data suggest a mechanistic scenario for

TDP induction, where specific HR defects (e.g., loss of BRCA1

or CDK12, but not of BRCA2) and excessive replicative stress

(CCNE1 pathway activation) in the presence of replication fork

stalling enhance TD formation. In 91% (151/166) of TDP cancers

with full genomic mutational ascertainment definitively involving

one of these three driver genes, we observed concomitant

mutation of TP53, implying that defective DNA damage check-

point control facilitated tumorigenesis, TD formation, or both.

Although disruptions of each of these genes have in the past

been implicated in general genomic instability, our findings

reveal that these oncogenic drivers induce a muchmore specific

pattern of structural rearrangements (i.e., the TDP) than was pre-

viously suspected.

The analysis of the gene disruptions as a consequence of TDP

raises other therapeutic possibilities. Potentially disruptive

double transections of PTEN were found in 16% of TNBCs

with class 1 TDs. PTEN knockout cells were preferentially sensi-

tive to PARP inhibitors in a synthetic lethal screen (Mendes-

Pereira et al., 2009) suggesting that TDPs with PTEN disruptions

may have greater deficiencies in DNA repair and may be more

sensitive to a range of agents that include cisplatin and PARP in-

hibitors. In fact, the number of known cancer genes affected by

TDs ranged from an average of �4 (in TDP group 1) to �60

(in TDP group 2/3mix), suggesting that the TDP is a state where

the mutational combinatorics can generate a range of potential

therapeutic modifiers, some of which may be exploited to

enhance treatment efficacy.

Our results provide a detailed view of a specific chromosomal

configuration in cancer characterized by genomically distributed

TDs that unifies a number of reports focused on individual cancer

types. We show that conjoint BRCA1 and TP53 mutations are
208 Cancer Cell 34, 197–210, August 13, 2018
essential to forming a precise TDP state that features short-

span TDs. Additional studies should further delineate the mech-

anisms of the other forms of TDP formation, and answer why

their associated TDs are restricted to specific size ranges.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Patient-derived xenografts (PDX) The Jackson Laboratory TM01079, TM00099, TM00089,

TM00097, TM01117, TM00091,

TM01278, TM00098, J000099327,

TM00090, TM01273, TM00096,

TM00999, J000080739, TM00093,

TM00094

Deposited Data

PDX WGS data This paper Sequence Read Archive database,

SRA: PRJNA430898.

Mouse mammary tumor WGS data This paper Sequence Read Archive database,

SRA: PRJNA430898.

TCGA WGS Cancer Genomics Hub https://cghub.ucsc.edu/

Genomic coordinates for GM12878 topologically

associating domains (TADs)

Tang et al., 2015 N/A

Tissue-specific super-enhancers and disease-

associated SNPs (breast and ovarian tissues)

Hnisz et al., 2013 N/A

TCGA gene-based copy number calls UCSC Cancer Genomic Browser

(https://genome-cancer.ucsc.edu)

TCGA_PANCAN_gistic2,

version: 2015-02-06

Somatic single nucleotide variation (SNV) data COSMIC data portal

(http://cancer.sanger.ac.uk/cosmic)

Data freeze version v78

WGS-based somatic structural variation calls (set 1) ICGC Data Portal (https://dcc.icgc.org/) Data freeze version 22

WGS-based somatic structural variation calls (set 2) COSMIC data portal

(http://cancer.sanger.ac.uk/cosmic)

Data freeze version v78

Experimental Models: Organisms/Strains

Mouse: KP: 129/Ola,FVB/N-K14cre;TrpD2-10 Laboratory of Dr. Jos Jonkers N/A

Mouse: KB1P: FVB/N-K14cre;Brca1D5-13;TrpD2-10 Laboratory of Dr. Jos Jonkers N/A

Mouse: KB2P: 129/Ola,FVB/N-K14cre;Brca2D11;TrpD2-10 Laboratory of Dr. Jos Jonkers N/A

Mouse: KB1B2P: 129/Ola,FVB/N-K14cre;

Brca1D5-13;Brca2D11;TrpD2-10

Laboratory of Dr. Jos Jonkers N/A

Mouse: WP: 129/Ola,FVB/N-WAPcre;TrpD2-10 Laboratory of Dr. Jos Jonkers N/A

Mouse: WB1P: 129/Ola,FVB/N-WAPcre;

Brca1D5-13;TrpD2-10

Laboratory of Dr. Jos Jonkers N/A

Software and Algorithms

SpeedSeq Chiang et al., 2015 N/A

NBIC-seq Xi et al., 2011 N/A

Crest Wang et al., 2011 N/A

Delly Rausch et al., 2012 N/A

BreakDancer Chen et al., 2009 N/A

Hydra-Multi Lindberg et al., 2015 N/A

mclust R package https://cran.r-project.org/web/packages/

mclust/mclust.pdf

N/A

lmerTest R package Kuznetsova et al., 2017 https://cran.opencpu.org/web/

packages/lmerTest/lmerTest.pdf

pastecs R package https://cran.r-project.org/web/packages/

pastecs/pastecs.pdf

N/A

Critical Commercial Assays

KAPA Hyper Prep Kit KAPA Biosystems Cat#KK8505
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and software should be directed to and will be fulfilled by the Lead Contact, Edison T.

Liu (ed.liu@jax.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

PDXs
TNBC PDX models were established at The Jackson Laboratory campus, as previously described (Menghi et al., 2016). All animal

procedures were approved by The Jackson Laboratory Institutional Animal Care andUseCommittee (IACUC) under protocol number

12027.

Mouse Models of Breast Cancer
Mouse models of breast cancer were established in the Jos Jonkers lab, as previously described (Jonkers et al., 2001; Liu et al.,

2007), in compliance with local and international regulations and ethical guidelines, and under authorization by the local animal

experimental committee at the Netherlands Cancer Institute (DEC-NKI).

METHOD DETAILS

Data Collection for TDP Classification
A catalogue of somatic tandem duplications (TDs) in human cancer was compiled from a number of published studies and a variety of

sources, including The Cancer Genome Atlas (TCGA), the International Cancer Genome Consortium (ICGC) and the Catalogue Of

Somatic Mutations In Cancer (COSMIC). In cases where data from two or more tumor samples from the same patient donor was avail-

able, only one samplewas selected for analysis. Prioritywas granted toprimary tumors and tumorswith the highest sequence coverage.

In addition, 16 patient-derived xenograft (PDX)models of TripleNegativeBreastCancer (TNBC)were sequenced in-house. In total, 2717

tumor genomes from as many independent donors were assessed for the presence, genomic distribution and span size of somatic

tandem duplications. The vast majority of the analyzed samples were primary solid tumors (n = 2,451). The dataset also included 75

metastatic solid tumors, 8 solid tumor recurrences, 18 PDXs, 55 cell lines, 98 blood tumors and 12 ascites samples (Table S3).

TCGA Cohort Data Collection and Processing
Whole Genome Sequencing (WGS) data for the 992 TCGA tumors analyzed in this study has been collected from the Cancer

Genomics Hub (https://cghub.ucsc.edu/). Raw reads were aligned against the reference genome Hg19 and SpeedSeq (Chiang

et al., 2015) was used to identify somatic rearrangements, as previously described (Barthel et al., 2017). Only tandem duplications

with quality scores of 100 or greater and with both paired-end and split-read support were selected for TDP analysis, as these criteria

have been reported to provide the highest confidence call set (Chiang et al., 2015). A list of all TCGA tumor samples analyzed with

their corresponding number of somatic tandem duplications is part of Table S3.

Other Publicly Available WGS Cancer Cohorts
WGS-based somatic structural variation calls from three studies (Connor et al., 2017; Ferrari et al., 2016; Fujimoto et al., 2016) were

downloaded from the ICGCData Portal (https://dcc.icgc.org/) in November 2016 (data freeze version 22).WGS-based somatic struc-

tural variation calls from 13 other studies (Bailey et al., 2016; Bass et al., 2011; Berger et al., 2011; Campbell et al., 2010; Desmedt

et al., 2015; Kataoka et al., 2015; Nik-Zainal et al., 2012, 2016; Northcott et al., 2012; Patch et al., 2015; Pinto et al., 2015; Stephens

et al., 2009) were downloaded from the COSMIC data portal in September 2016 (data freeze version v78). Finally, WGS-based

somatic structural variation calls from 13 additional independent studies were collected from the supplementary material of their

corresponding publications (Baca et al., 2013; Berger et al., 2012; Grzeda et al., 2014; Hillmer et al., 2011; Imielinski et al., 2012; Inaki

et al., 2014; McBride et al., 2012; Menghi et al., 2016; Natrajan et al., 2012; Ng et al., 2012; Popova et al., 2016; Totoki et al., 2014;

Yang et al., 2013). A full list of all individual tumor samples collected and analyzed is reported in Table S3, together with annotation of

their original study and WGS source.

In-House WGS Cohort and Mouse Tumor Sequencing
The in-houseWGS cohort consisted of 16 patient derived xenograft (PDX) TNBCmodels obtained from The Jackson Laboratory PDX

inventory. Genomic libraries of 400 bp size were derived from the 16 PDX genomic DNA samples, using a KAPA Hyper Prep Kit ac-

cording to manufacturer guidelines and 150 bp paired-end sequence reads were generated using the Illumina HiSeq X Ten system

and aligned to the human genome (Hg19). Potential mouse contaminant reads were removed using Xenome (Conway et al., 2012).

Structural variant calls were generated using four different tools (NBIC-seq (Xi et al., 2011), Crest (Wang et al., 2011), Delly (Rausch

et al., 2012), and BreakDancer (Chen et al., 2009)), and high confidence events were selected when called by all four tools. In

the absence of matched normal DNA samples to be used as controls, germline variants were identified as those that appear in

the Database of Genomic Variants (DGV, http://dgv.tcag.ca/) and/or the 1,000 Genomes Project database (http://www.

internationalgenome.org).
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Mouse mammary tumors were generated in K14-cre;Trp53F/F (KP), WAP-cre;Trp53F/F (WP), K14-cre;Brca1F/F;Trp53F/F (KB1P),

WAP-cre;Brca1F/F;Trp53F/F (WB1P), K14-cre;Brca2F/F;Trp53F/F (KB2P) and K14-cre;Brca1F/F; Brca2F/F;Trp53F/F (KB1B2P) female

mice as described previously (Jonkers et al., 2001; Liu et al., 2007). Genomic libraries of 400 bp size were derived from 18 mouse

tumor tissues and 2 mouse spleen tissues (normal controls) using a KAPA Hyper Prep Kit according to manufacturer guidelines.

Mouse genomic libraries were sequenced using Illumina HiSeq 4000 to generate 150 bp paired-end sequence readswhichwere sub-

sequently aligned to the mouse genome (Mm10). Structural variants were then predicted using a custom pipeline that combines the

Hydra-Multi (Lindberg et al., 2015) and SpeedSeq (Chiang et al., 2015) algorithms. Structural variation data obtained from the two

spleen DNA samples were used to remove germline variants.

The TDP Classification Algorithm
Step 1: Classification of the TCGA Cohort as the Test Set

A TDP score was computed for each tumor sample within the TCGA cohort (n=992) based on the number and chromosomal distri-

bution of its somatic tandem duplications (TDs), as previously described (Menghi et al., 2016). Samples with no TDs but evidence of

other types of somatic rearrangements and with a minimum sequence coverage of 6X were automatically scored as non-TDP.

For each one of the 118 tumors that featured a positive TDP score, we computed the span size density distribution of all the de-

tected TDs. Using the turnpoints function of the pastecs R package, we identified the major peak of the distribution (i.e. mode) plus

any additional peaks whose density measured at least 25% of the distribution mode. A total of 154 TD span size distribution peaks

were identified across the 118 TDP TCGA tumors and they appeared to cluster along recurrent and clearly distinct span-size intervals

(Figure S1). To resolve the underlying distribution of the 154 identified TD span size distribution peaks, we used theMclust function of

themclust R package and fit different numbers of mixture components (up to nine) to the peak distribution, using default estimates as

the starting values for the iterative procedure. We compared the resulting mixture model estimates using the Bayesian information

criterion and found that a mixture model comprising five Gaussian distributions with equal variance corresponded to the optimal fit.

We then identified five non-overlapping span size intervals by setting thresholds corresponding to the intersections between each

pair of adjacent Gaussian curves (<1.64 Kb, 1.64-51 Kb, 51-622 Kb, 622 Kb-6.2Mb, >6.2Mb) (Figure S1). Based on these thresholds,

wewere able to classify each TD span size distribution peak as well as each individual TD into one of 5 span size classes (classes 0-4,

Figure S1).

Finally, we sub-grouped TDP tumors based on the presence of specific peaks/peak combinations, which appeared to be highly

prevalent across the 118 TCGA TDP tumors. Tumors featuring a TD span size modal distribution were designated as TDP group 1,

TDP group 2 and TDP group 3 based on the presence of a single TD span size distribution peak classified as class 1, class 2 and

class 3, respectively. Similarly, tumors featuring a TD span size bimodal distribution were designated as TDP group 1/2mix (featuring

class 1 and class 2 peaks), TDP group 1/3mix (featuring class 1 and class 3 peaks) and TDP group 2/3mix (featuring class 2 and

class 3 peaks) (Figure 1A and Table S2). Only one out of the 118 TDP tumors did not fit any of these profiles as it featured a class 0

peak and a class 4 peak but none of the class 1, class 2 or class 3 peaks.We labeled this tumor as unclassified and did not include it in

any further analysis.

Step 2: Validation of the TDP Classification Algorithm on an Independent Collection of Sample Cohorts

The TDP classification algorithm developed using the TCGA cohort as test set was applied to a completely independent dataset of

1725 tumor samples from individual patient donors, assembled from 30 different studies (referenced above) and representing 14

different tumor types. The algorithm performed consistently and robustly across the different studies of the validation cohort, by clas-

sifying 99%of the 258 TDP tumors in this cohort (257/258) into one of the six TDP subgroup profiles identified using the TCGA cohort,

and by replicating similar frequencies of TDP subgroup occurrences within specific tumor types.

SNV Association Analysis
Somatic single nucleotide variation (SNV) data for the tumor samples analyzed in this studywas downloaded in September 2016 from

the COSMIC data portal (data freeze version v78). Only tumor samples classified as breast, ovarian or endometrial carcinomas and

for which whole genome or whole exome sequencing data were available were considered for the SNV-TDP group association anal-

ysis (n = 678, see Table S3). Only potentially damaging somatic variants were included in this analysis and comprised nonsense,

frame-shift, splice site andmissensemutations. Candidate genes associated with specific TDP states were considered those whose

mutation rate was at least 10%andwas specifically associated with only one distinct TDP profile and not any other, nor with non-TDP

tumors. The significance of the associations was determined via Fisher’s exact test. Given the large number of genes tested

(n=17,332) and the relatively modest number of available samples for each TDP subgroup, none of the associations reached statis-

tical significance after correcting for multiple testing. Nonetheless, non-corrected p values were utilized to rank genes and to identify

the most likely candidates. Only two candidate genes emerged from this analysis (CDK12 in TDP group 2/3mix and FBXW7 in TDP

group 2), and their association with the specific TDP subgroups was cross-validated by existing literature reports (CDK12 TD plus

phenotype described by Popova et al. (Popova et al., 2016), in the case of CDK12) or alternative yet complementing gene mutations

(CCNE1 amplification in the case of FBXW7).

CNV Association Analysis
The discovery phase of the copy number variant (CNV) association analysis was performed on the TCGA pan-cancer dataset, to

allow for homogenously processed copy number information. Gene-based copy number calls relative to 977 tumor samples were
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obtained from the UCSCCancer Genomic Browser (https://genome-cancer.ucsc.edu) (dataset ID: TCGA_PANCAN_gistic2, version:

2015-02-06) (Table S3). A liner mixed model (LMM) was used to identify the effect of TDP groups on copy number variations while

controlling the variation from multiple tissues by including the tumor issue variable as random effect. Statistical analysis was

performed using the package lmerTest (Kuznetsova et al., 2017) in R (version 3.3.0). P values were adjusted for multiple testing

using Benjamini-Hochberg correction. Genes were then ranked based on the p value of their association with TDP group 2 relative

to TDP group 1 and, independently, to non-TDP tumors. The top genes whose copy number change was associated with TDP group

2 tumors were identified as those with the highest cumulative rank (see also Table S6).

Upon identification of the 19q12 amplicon as linked to TDP group 2 status, CNV data for the CCNE1 gene relative to the remaining

tumor samples considered in this study was either retrieved from the COSMIC data portal (data freeze version v78) in the form of

gene-based copy number value, or obtained from the supplementary material of the tumor samples’ original publications, when

available.

TD Breakpoint Analysis
Somatic TDs occurring across the entire pan-cancer dataset analyzed in this study (2717 tumor samples) were categorized into

4 classes as follows (also see Figure S4A):

(a)Class 1 TDs (�11 Kb) occurring in TDP tumors featuring a class 1 TD span size distribution peak (i.e. TDP groups 1, 1/2mix and

1/3mix; n = 22,447 TDs);

(b)Class 2 TDs (�231 Kb) from TDP tumors with a class 2 TD span size distribution peak (i.e., TDP groups 2, 1/2mix and 2/3mix;

n = 9794 TDs);

(c)Class 3 TDs (�1.7 Mb) from TDP tumors with a class 3 TD span size distribution peak (i.e. TDP groups 3, 1/3mix and 2/3mix;

n = 2,586 TDs) and

(d)Non-TDP TDs, i.e. all TDs occurring in non-TDP tumors, regardless of their individual span size (n = 25,397 TDs).

TD coordinates originally annotated using older genome assemblies were converted to the GRCh38/hg38 human genome version

using the LiftOver tool of the UCSC Genome Browser (https://genome.ucsc.edu/index.html).

All of the breakpoint coordinates relative to each TD class were then binned into consecutive, non-overlapping 500 Kb genomic

windows. A TD breakpoint background distribution was generated by shuffling the TD coordinates 1,000 times. At each iteration, the

genomic locations of the TDs were randomly permuted across the entire genome with the exclusion of centromeric and telomeric

regions, while preserving TD numbers and span sizes. Genomic hotspots for TD breakpoints were identified as 500 Kb genomic

windows with an observed number of breakpoints larger than the average count value obtained from the background distribution,

plus 5 standard deviations.

Analysis of Recurrently TD-Impacted Genes
TD-impacted genes were identified as those genes whose genomic location overlapped with that of one or more TDs. Every instance

in which a gene and a TD featured some degree of genomic overlap was flagged as either (i) duplication (DUP), when the TD spanned

the entire length of the gene body resulting in gene duplication; (ii) double transection (DT), when both TD breakpoints fell within the

gene body resulting in the disruption of gene integrity or (iii) single transection (ST), when only one TD breakpoint fell within a target

gene body, resulting in a de facto gene copy number neutral rearrangement. For each TD class (Figure S4A) and each tumor type

examined, we computed the frequency with which any given gene appeared to be impacted in one of the three possible ways

(i.e. DUP, DT or ST) and assigned empirical p values to these occurrences based on the number of times, out of 1,000 iterations,

that a random permutation of the TD genomic locations would result in a similar or higher frequency. Recurrently TD-impacted genes

were identified as those that appeared to be affected by TDs in any one of the three possible ways in at least 5%of the tumor samples

examined and in a minimum of 3 tumor samples, and with a p value<0.05. The full list of recurrently TD-impacted genes is provided in

Table S8.

Cancer Gene Lists
Breast Cancer Survival Genes

Genes associated with breast cancer patients’ prognosis data (good and poor prognosis genes) were identified as previously

described (Inaki et al., 2014).

Known Cancer Genes

Lists of known tumor suppressor genes (TSGs) and oncogenes (OGs) were generated described before (Menghi et al., 2016).

Davoli Cancer Genes

Tumor suppressor genes (TSGs) and oncogenes (OGs) identified by Davoli et al. (Davoli et al., 2013).

Analysis of Disease-Associated Single Nucleotide Polymorphisms (SNPs) and Tissue-Specific Super-Enhancers
Lists of tissue-specific super-enhancers and disease-associated SNPs relative to breast and ovarian tissues were obtained from

Hnisz et al. (Hnisz et al., 2013). For both tumor types examined (TNBC and OV), and for each one of the 3 major classes of TDs

occurring in TDP tumors (Figure S4A), we computed the percentage of TDs that results in the duplication of SNPs and, separately,
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super-enhancers. The chi-squared test was used to compare the observed percentage to the expected one, computed as the mean

value obtained from 1,000 random permutations of the TD genomic locations, as described above.

Analysis of Topologically Associating Domains (TADs)
Genomic coordinates relative to the full catalogue of TADs for the B lymphoblastoid cell line GM12878 were published before (Tang

et al., 2015). For both tumor types examined (TNBC and OV), and for each one of the 3 major classes of TDs occurring in TDP tumors

(Figure S4A), we computed the percentage of TDs that overlap with TAD boundaries by at least one base pair. To compute the

expected TD genomic distribution, genomic fragments were randomly sampled from non-centromere and non-telomere genomic

region, with the requirement that the lengths of the sampled fragment fit the length distribution of the observed TDs. The randomly

sampled fragments were then mapped to the TAD boundaries to calculate the expected percentage of TDs that overlap with TAD

boundaries. The mean and standard deviation of the number of random fragments that overlap TAD boundaries were computed

from 1,000 random permutations. The chi-squared test was used to compare the observed and expected values.

DATA AND SOFTWARE AVAILABILITY

WGS data relative to both the in-house sequenced cohort (i.e. 16 PDX TNBCmodels) and the mouse breast cancer models are avail-

able from the Sequence Read Archive database (www.ncbi.nlm.nih.gov/sra), SRA: PRJNA430898.

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless otherwise stated, statistical analysis was performed and graphics produced using the R statistical programming language

version 3.3.2 (www.cran.r-project.org). All hypothesis tests were two-sided when appropriate and the precise statistical tests

employed are specified in Results and corresponding figure legends.
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